O astrônomo Johannes Kepler (1571-1630) propôs, no século XVII, um conjunto de três leis. Estas leis são chamadas de Leis de Kepler e descrevem o movimento dos planetas no sistema heliocêntrico (Sol no centro).
O astrônomo Johannes Kepler (1571-1630) propôs, no século XVII, um conjunto de três leis. Estas leis são chamadas de Leis de Kepler e descrevem o movimento dos planetas no sistema heliocêntrico (Sol no centro).
Desde muito antes, nossos ancestrais já haviam percebido que alguns astros tinham um movimento regular.
O primeiro modelo que surgiu foi o geocentrismo, que dizia que tudo orbitava ao redor do nosso planeta Terra, mas esse modelo apresentava várias falhas.
Nicolau Copérnico (1473-1543) foi o primeiro a apresentar um modelo heliocêntrico, que colocava o Sol como centro do universo. Contudo, na sua teoria, os planetas descreviam uma órbita circular.
Utilizando as observações do astrônomo Tycho Brahe (1546-1601), Kepler enunciou suas três leis.
Na imagem acima podemos ver um cone sendo cortado por um plano gerando uma elipse.
Elipse é um termo muito importante nas Leis de Kepler, e, como podemos ver na imagem acima, ele é gerado por um plano cortando o cone.
Na imagem acima podemos ver as características de uma elipse.
A característica que nos interessa, aqui, é a presença de dois focos nas elipses, que na imagem são dados por F1 e F2.
Um círculo é um caso especial de elipse, no qual os dois focos estão no mesmo ponto.
A imagem acima mostra o planeta Terra orbitando ao redor do Sol em uma órbita elíptica.
Kepler disse:
“O planeta em órbita em torno do Sol descreve uma elipse em que o Sol ocupa um dos focos.”
Até esse momento, as órbitas eram tidas como circulares, mas Kepler mudou isso, dizendo que eram elípticas.
O planeta descreve um movimento elíptico, e a estrela Sol fica em um dos focos.
A menor distância do Sol até o planeta, somada com a menor distância do planeta até o outro foco, vai ser sempre a mesma, e isso é uma característica das elipses.
A imagem acima mostra um planeta se deslocando em duas distâncias diferentes na órbita elíptica.
Para postular a Segunda Lei, Kepler disse:
“A linha que liga o planeta ao Sol varre áreas iguais em tempo iguais.”
Isso implica que o planeta vai percorrer a órbita com velocidades diferentes, dependendo da distância que o planeta está do Sol.
Quando o planeta estiver mais perto do Sol, vai estar com uma velocidade maior do que se estivesse longe do Sol.
Na imagem, se t for igual para ambos os casos, teremos que:
\[A_{1}=A_{2}\]
Temos dois termos técnicos para descrever os pontos em que o planeta se encontra mais próximo do Sol e mais longe do Sol:
Para a Terceira Lei, Kepler disse a seguinte frase:
“Os quadrados dos períodos de translação dos planetas são proporcionais aos cubos dos semieixos maiores de suas órbitas”
A terceira lei de Kepler é dada pela seguinte fórmula:
\[\frac{T^2}{D^3}=k\]
Onde:
Se mudarmos a fórmula para o seguinte formato:
\[T^{2}=k\cdot D^{3}\]
Fica fácil visualizar que, quanto mais longe do Sol o planeta estiver, maior vai ser o período de translação, ou seja, mais longo vai ser o seu ano.
\[A_{1}=A_{2}\]
\[\frac{T^2}{D^3}=k\]
\[T^{2}=k\cdot D^{3}\]
Na linha de uma tradição antiga, o astrônomo grego Ptolomeu (100 - 170 d.C.) afirmou a tese do geocentrismo, segundo a qual a Terra seria o centro do universo, sendo que o Sol, a Lua e os planetas girariam em seu redor em órbitas circulares. A teoria de Ptolomeu resolvia de modo razoável os problemas astronômicos da sua época. Vários séculos mais tarde, o clérigo e astrônomo polonês Nicolau Copérnico (1473 - 1543), ao encontrar inexatidões na teoria de Ptolomeu, formulou a teoria do heliocentrismo, segundo a qual o Sol deveria ser considerado o centro do universo, com a Terra, a Lua e os planetas girando circularmente em torno dele. Por fim, o astrônomo e matemático alemão Johannes Kepler (1571 - 1630), depois de estudar o planeta Marte por cerca de trinta anos, verificou que a sua órbita é elíptica. Esse resultado generalizou-se para os demais planetas.
A respeito dos estudiosos citados no texto, é correto afirmar que: